
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Volume 11 Issue 7 July 2024

27

Integrating AI-Powered Pose Detection for Holistic

Fitness Monitoring: Exploring Traditional Yoga

Postures and Exercise Recognition
[1] Dr. Mansoor Hussain D, [2] Omkar Prashant Karmarkar, [3] Dhananjay Singh Chauhan, [4] Bitan Mallik,

[5] Sohil Agarwal, [6] Abhijay Dhodapkar
[1] [2] [3] [4] [5] [6] Vellore Institute of Technology SCOPE Chennai, India

Corresponding Author Email: [1] mansoorhussain.d@vit.ac.in, [2] omkarprashant.karmarkar2021@vitstudent.ac.in,
[3] dhananjaysingh.chauhan2021@vitstudent.ac.in, [4] bitanmallik2002@gmail.com, [5] Sohil3002z@gmail.com,

 [6] abhijayd.04@outlook.com

Abstract— This research introduces a pioneering web-based platform that melds ancient wellness practices with cutting- edge

technology, transforming the realms of yoga and fitness. Utilizing ml5.js and sophisticated machine learning, the platform refines

exercise performance monitoring, focusing on the revital- ization of Surya Namaskar—a foundational yoga sequence—and various

exercises such as squats, push-ups, and lunges.Surya Namaskar, or sun salutation, offers significant physical and men- tal benefits,

including enhanced strength, flexibility, endurance, cardiovascular health, mindfulness, and overall vitality. Our platform employs

machine learning to provide supervised pose recognition, ensuring precision and fostering disciplined, goal- oriented fitness

routines.The project encompasses three main sections: Surya Namaskar Posture Detection, Exercise Detection, and Yoga Posture

Detection. Users receive real-time feedback and performance metrics, optimizing their fitness journeys. p5.js creates the user interface

and captures pose lines, while the pre- trained ml5.js model, based on PoseNet, ensures accurate pose recognition.Acknowledging

existing research in deep learning and pose estimation, our project addresses limitations through seamless web integration and

customized neural networks for superior detection efficiency. Methodology includes data collec- tion, model training, and real-time pose

classification, empha- sizing user interaction, pose correction, and exercise tracking.To synchronize continuous feature extraction and

model detection in dynamic sequences like Surya Namaskar, we employ a mutex lock mechanism, ensuring accurate and stable model

transitions. Comprehensive user performance reporting includes metrics such as calories expended.In essence, this research offers a

holistic approach to wellness, elegantly combining traditional yoga practices with modern technology to enhance physical and mental

well-being.

Index Terms— ai-powered pose detection, surya namaskar, real- time feedback, machine learning, posenet models, physi- cal and

mental well-being, yoga pose identification, deep learn- ing, fitness application, technology-assisted health solutions.

I. MOTIVATION AND OBJECTIVE

The motivation arises from the need to bridge the gap

between ancient wellness practices and contemporary fitness

demands, ensuring that individuals can benefit from time-

honored exercises like Surya Namaskar, squats, and push-ups

with greater precision and effectiveness. Traditional methods

often lack the ability to provide immediate, personalized

feedback and detailed performance tracking, which can

hinder progress and discourage consistent practice. By

addressing these shortcomings, this research aims to optimize

individual fitness journeys, making wellness routines more

accessible, adaptable, and efficient. This approach seeks to

empower users to achieve holistic well-being and vitality in

their daily lives, catering to the growing demand for more

tailored and insightful fitness solutions.

The objective of this research is to develop a web-based

platform that integrates ancient wellness practices with ad-

vanced machine learning to enhance the accuracy and effec-

tiveness of yoga and fitness routines, specifically focusing on

Surya Namaskar and other exercises. The platform aims to

provide real-time feedback and performance metrics through

sophisticated pose recognition and user interaction.

II. INTRODUCTION

Surya Namaskar, or sun salutation, is a dynamic sequence

of yoga poses that holds numerous ad- vantages for physical

and mental well-being. Firstly, it serves as a comprehensive

warm- up exercise, gradually awakening the body and

preparing it for more intense physical activity. The sequence

en- gages multiple muscle groups, including the core, arms,

legs, and back, promoting strength, flexibility, and endurance.

Addition- ally, the rhythmic breathing synchronized with

each movement enhances cardiovascular health, stimulating

circulation and

oxygenation throughout the body. From a mental

perspective, the repetitive nature of Surya Namaskar

encourages mind- fulness and concentration, fos-tering a

sense of calm and focus. Regular practice of Surya Namaskar

is known to boost energy levels, improve posture, and

promote overall vitality. Moreover, its accessibility and

adaptability make it suitable for practitioners of all ages and

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 7 July 2024

28

fitness levels, offering a versatile and convenient way to

incor- porate yoga into daily routines. Overall, Surya

Namaskar stands as a holistic practice that harmonizes the

body, mind, and spirit, contributing to holistic well-being and

vitality.

In this Comprehensive Product, our focus is directed

toward the meticulous incorporation of the fusion of machine

learning methodologies and time-honoured traditions of yoga,

coupled with contem- porary fitness regimes. Our model

provides su- pervised recognition of poses. Here ml5js is

used only to detect poses that are trained by us. This

technology not only aims to enhance the precision of exercise

performance monitoring but also to provide users with

personalized guidance, performance metrics, and insights to

optimize their fitness journey.

Fig. 1. Complete cycle of 12 poses of Surya Namaskar

The research project spans three distinctive sections:

 Surya Namaskar Posture Detection: Users engage in a

sequence of 12 prescribed postures, with each posture

requiring a fixed duration preset based on the user’s

requirement. The application ensures that users

progress to the subsequent posture only when the

current one is accurately performed. This Builds

Discipline and Fitness goal-oriented tasks requiring

the user to complete the set 12 postures to complete

the cycle.Figure 1

 Exercise Detection: We have trained our models for

the following exercises:

– Lunges

– Leg-Raise

– Push-Ups

– Knee-touch

– Squats

Fig. 2. Working flow diagram

 Experience the freedom to perform these exercises

as many times as you want with an integrated

counter seamlessly counter assisting you in tracking

the number of repetitions. Elevate your exercise

routine with this.

 Yoga Posture Detection: We have trained our

models for the following traditional yoga:

– Warrior Pose

– Dog Posture

– Tree Posture

– Mountain Posture

– Chair Posture

Feel the stillness within as you flow through each posture

of the Yoga Session, supported by precise time intervals.

Hold each pose with grace and strength, knowing you have

the perfect time to deepen your breath, refine your alignment,

and tune into your inner being. Let the timer be your

companion, not a taskmaster. It allows you to surrender to the

present moment, to fully inhabit each pose without the

distraction of wondering if it’s time to move on

In the context of this research endeavour, we employ p5.js

to generate a standardized canvas on the user’s interface,

capturing pose lines through landmarks that represent the

user’s current posture. These landmark data are then relayed

to the ml5.js model—a meticulously pre-trained algorithm

specializing in the recognition of PoseNet Models, performed

by an expert in the field.

Where users are encouraged to perform each posture for a

user-selected duration before seamlessly tran- sitioning to the

next. This approach provides overall physical and mental

well-being.

III. BACKGROUND REVIEW

This section acknowledges the substantial contributions

made in the yoga and exercise field. The vast expanse of

existing literature stands as a testament to the

commendable efforts and profound insights offered by

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 7 July 2024

29

researchers, scholars, and practitioners in this domain.

A. Findings from Research Papers

 Deep learning and Posenet: It involves two modules:

pre-processing and native (real-time) parts. The pre-

processing module extracts target values for each

yoga pose, while the native part predicts the actual

poses done by the user in real time. The system uses

TensorFlow- Lite for easy implementation of the

PoseNet model on mobile devices and OpenCV for

calculating correct pose angles. This offers real-time

pose estimation and correction for yoga poses, making

it an effective tool for yoga practitioners. Figure 3 [1]

 TL-MobileNet-DA (Transfer learning) Transfer

learn- ing is a machine learning technique that

involves using a pre-trained model as a starting point

for a new task, in this case, recognizing yoga postures.

The pre-trained model is fine-tuned on the new dataset,

and the weights of the model are adjusted to improve

performance on the new task. The TL-MobileNet-DA

model was chosen as the optimal model for accuracy

and sensitivity.[2]

 Logistic Regression Model along with Mediapipe

and OpenCv: Logistic regression is a statistical

method for analyzing a dataset in which there are one

or more independent variables that determine an

outcome. In the context of the paper, a logistic

regression model is used to classify data and detect

yoga poses based on the x, y, and z coordinates of

joint points. This model is trained and tested to

achieve a high accuracy of nearly 100 per cent.[3]

 Deep learning: Deep learning-based 2D/3D human

pose estimation methods from monocular images or

video footage of humans. The key technologies used

in the methodology include deep learning techniques

such as Convolutional Neural Networks (CNNs) and

recurrent neural networks (RNNs) for feature

extraction and se- quence modelling. These

techniques have been widely adopted in the field of

computer vision and have shown remarkable

performance in tasks such as image recogni- tion and

sequence modeling.[4]

B. Limitations of the above papers and how do we

overcome them

Our project successfully detects and classifies postures

with efficiency. We’ve achieved seamless web integration

using ml5.js and p5.js, empowering users to customize and

build interactive applications. ML5 Js is based on PoseNet

and provides 2 models i.e. RestNet50 and MobileNetV1, with

the ability to run directly in web browsers or on mobile

devices. This simplicity facilitates integration into various

applications without the need for extensive development

efforts.

Unlike MobileNet which is good for small, low latency

power models parameterized to meet the resource constraints.

In the above projects, OpenCv and MediaPipe are employed,

Fig. 3. Working of Deep learning and posenet

along with custom angle calculations for posture detection.

Our approach involves utilizing a neural network to store

custom-trained postures, enhancing the efficiency of

detection. This tailored neural network setup provides

flexibility and adaptability, making our project versatile for

various appli- cations.

IV. METHODOLOGY

This code utilizes the ml5.js library to perform pose classi-

fication using the Pose Net model for human pose estimation.

The implementation is divided into three parts: data

collection, model training, and model deployment. The main

focus is on collecting training data for different poses,

training a neu- ral network, and deploying the trained model

for real-time pose classification through a webcam feed.

In the coding section of this project in the HTML, we have

included and imported the necessary files to libraries of ml5

js and p5 .js which we would be using in our js file created

which is an important setup. JavaScript file involves the use

of a library and its functions for our setup and pose detection.

A. Data Collection

1) Canvas and Video Capture:

Upon the initiation of the web page, the setup() function,

an integral component of the p5.js library, is executed to

establish the foundational structure. This includes the

generation of a canvas with dimensions 640 x 480 within the

browser window. Simultaneously, the create- Capture()

function is utilized to capture user video input, serving as the

primary input for subsequent processes.

2) Model Integration:

The integration of the PoseNet model, a sophisticated

machine learning model designed for precise pose esti-

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 7 July 2024

30

mation, is realized through the implementation of the

ml5.poseNet() function. This function seamlessly in-

corporates the captured video as input, facilitating the

subsequent processing of pose- related data.

3) Key Press Event Handling Label Assignment:

User interaction is managed through the implementation of

the keyPressed() function. This function serves as the conduit

for user key presses, enabling the assignment of labels and

the systematic collection of data. Triggered by a designated

key (e.g., “a”), a 10-second window is activated, prompting

the user to execute a specific posture. Subsequently, the

gotPoses() function is invoked to accurately extract landmark

data points from the video, which are then meticulously

stored in an array. Each set of data is accompanied by its

corresponding label for future reference.

4) Neural Network Integration:

A pivotal step involves the instantiation of a

ml5.neuralNetwork() object, denoted as “brain.” This object

acts as the receptacle for the neural network, seamlessly

incorporating the previously collected data, complete with

labels.

5) Data Storage:

The culmination of the process is marked by the user’s

initiation of data storage by pressing the “S” key. The

comprehensive neural network data, encapsulating both input

data and network structure, is diligently preserved in JSON

format. This stored data serves as a founda- tional resource

for subsequent training endeavours.

B. Training

We will utilize ml5’s Neural Network to classify poses

obtained from Pose Net detection. Additionally, we’ll

employ p5’s library to visualize the epoch-loss graph during

neural network training. Initializing a neural network

instance with classification options and setting debug to true

enables visu- alization of the training process. Before

commencing training with the data, normalization is applied

to bring the pose Net’s input into the unit plane.

Training parameters include setting epochs to 32 and the

batch value to 32. The generated epoch- loss graph allows us

to analyze potential under-fitting and over-fitting. Once

satisfaction with the model’s performance is achieved, it can

be saved for production use. It is saved in three files which

are the weight file (contains weights and bias for neural net-

work), metafile (contains info about input and output values),

and main file (contains info about neural network like layers,

activation, etc).

C. Making Predictions

The main core of the project taking in real video of users

performing the selected selections of user and performing

effective and time-assisted posture detection. This Section

provides light on the Working of the Various Sections of the

Project.

1) Exercise Section:

In this section, the user has the choice selection of

postures Squats, Lunges, Leg Raiser, Push Ups, Bending

Toe Touch, Once the User Selects a Required Posture, the

Model Corresponding to the Pos- ture is loaded using this

method. Example:

const model info = {

model: ‘model2/model.json’, metadata: ’model2/model

meta.json’,

weights: ‘model2/model.weights.bin’};

These files are generated by IN THE training setup. The

main Working part of the exercise is the vertical or

downward movement like In squats, the raise and bend of

these two postures are predicted by the model and based on

the state machine the count of the current performing pose is

stored and rendered on the browser. When the user exits the

current exercise the model is removed and the time and steps

done are saved in the user’s Reports Sections.

2) Yoga Section:

This is a Timer-Based Section that Enables the User to

perform all given postures Tree Posture. Warrior Pose, Dog

Posture, Mountain Pose, Chair Pose. Once this section is

Chosen by the user a new page loads and a model loads

similar to all other sections of the projects. In this there is no

model switch involved, one model is capable of performing

detections of all the postures and the Js code effectively

makes the user perform the current posture for a specific

duration and the model ensures the posture correction for this

phase.

3) Surya Namaskar Section:

The Surya Namaskar Module lies at the core of the project,

strategically designed to optimize the user’s overall fitness

level. Building upon the modular archi- tecture employed in

other sections, this module de- ploys distinct

machine-learning models: one specifically calibrated for

standing postures associated with Surya Namaskar and

another for sleep-related postures. This targeted division

significantly enhances both the perfor- mance and detection

accuracy of posture recognition. Upon user initiation through

the “Start Button,” the rele- vant model is activated,

prompting the user to embark on the Surya Namaskar

sequence. Concurrently, the robust model performs

continuous pose analysis, employing cutting-edge algorithms

to precisely determine whether the user has achieved the

desired posture.

D. Challenge:Synchronizing Continuous Feature

Extraction and Model Detection

Surya Namaskar, a sequence of twelve yoga postures,

presents a dynamic scenario for pose recogni- tion.

Landmarks representing key body positions are continuously

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 7 July 2024

31

extracted throughout the sequence. Simultaneously, multiple

AI models analyze these landmarks to identify specific

postures in real time. The primary challenge lies in ensuring

synchronous execution of these processes without

introducing delays or errors during model switching.

E. Proposed Solution: Model Switching with Mutex Lock

To address this challenge, we propose utilizing a mutex

lock, a synchronization mechanism that ensures exclusive

access to a shared resource by multiple threads or processes.

In our case, the mutex lock controls access to the currently

active AI model during switching procedures. The

implementation involves the following steps:

1) Initialization:During system setup, all AI models

and the mutex lock are initialized.

2) Current Model Maintenance:A global variable

keeps track of the currently active model for seamless

refer- encing.

3) Switching Logic:

• Pre-Switch Lock Acquisition:Before

transitioning to a new model, the mutex lock is

acquired to prevent concurrent access to the

previous model during its final classification.

• Post-Switch Lock Acquisition:Once the previous

model completes its final classifica- tion, the

mutex lock is again acquired to prepare for the

switch.

4) Model Switch:The active model reference is updated

within the protected space provided by the lock,

reflect- ing the switch to the new model.

5) Release Lock:Once the switch is complete, the

mutex lock is released, allowing the classification

loop to resume with the newly activated model.

F.Analysis and Validation

The implementation of the mutex lock mechanism demon-

strably improves the stability and efficiency of model switch-

ing within the Surya Namaskar pose recognition system. By

preventing concurrent access and data race conditions, this

approach ensures accurate pose detection throughout the

dynamic sequence. Further analysis and testing could focus

on optimizing the lock acquisition and release timings for

even greater performance enhancements.

V. ANALYSIS AND RESULTS

Comprehensive Reporting: The culminating facet of the

project delivers an exhaustive report for each section. This

includes intricacies such as calories expended and detailed

performance metrics, offering users a thorough

understanding of their participation and progress in the

research study.

The Below graph gives epoch diagrams that hold signifi-

cance in our project, An epoch graph is a vital tool in machine

learning, tracking a model’s training process, applicable in

frameworks like ML5.js for prediction tasks. An epoch rep-

resents a full pass through the dataset during training, and the

graph visually depicts the model’s performance evolution,

offering insights:

1) Convergence: Indicates if the model is converging

to- wards an optimal solution, seen through stabilized

or decreased error metrics.

2) Overfitting: Reveals when the model relies too much

on training data, losing generalization ability, often

shown by a gap between training and validation

performance.

3) Underfitting: Indicates the model’s failure to capture

underlying patterns, reflected in consistently high

error rates across training and validation sets.

4) Learning Rate: Helps adjust this hyperparameter,

con- trolling the pace of model updates, crucial for

accelera- tion, and avoiding oscillations or

divergence.

A. Graphical analysis of model training

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 7 July 2024

32

Fig. 4. Epoch-loss graphs of exercise positions

Fig. 5. Epoch-loss graphs of Surya Namaskar

B. Final view

Fig. 6. Working of Web application

VI. CONCLUSION

This research successfully integrates ancient wellness

prac- tices with advanced machine learning, enhancing

exercise routines like Surya Namaskar. By utilizing ml5.js

and PoseNet for real-time pose recognition and feedback, the

platform pro- motes precise, goal-oriented fitness, improving

both physical and mental well-being through seamless

technology integra- tion.

REFERENCES

[1] Girija Gireesh Chiddarwar, Abhishek Ranjane, Mugdha

Chindhe, Rachana Deodhar, Palash Gangamwar: AI-Based

Yoga Pose Estimation for Android Application, ISSN No:-

2456-2165

[2] Chhaihuoy Long, Eunhye Jo, Yunyoung Nam: Development

of a yoga posture coaching system using an interactive display

based on transfer learning, The Journal of Supercomputing

(2022) 78:5269–5284 https://doi.org/10.1007/s11227-021-

04076-wLink

[3] Rutuja Jagtap, Monali Zanzane, Rutuja Patil: Yoga pose

detection using machine learning e-ISSN: 2582-5208

[4] Yucheng Chena, Yingli Tianb, Mingyi Hea: Monocular

Human Pose Estimation: A Survey of Deep Learning-based

Methods: https://doi.org/10.1016/j.cviu.2019.102897Link

[5] Ml5js library documentation https://learn.ml5js.org//

reference/indexLink

[6] P5js library documentation https://p5js.org/Link

[7] Machine learning in Javascript guide https://thecodingtrain.

com/tracks/ml5js-beginners-guide/Link

[8] Coding Train Ml-5 js Youtube Playlist https://youtu.be/26uAB

exmOX4?si=oMn3w3Uj4mYrky98Link

[9] Yoga-AI by cris-maillo https://github.com/cris- maillo/yogAI

Link

